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ABSTRACT

Array signal processing has a great field of applications in communication.Direction Of
Arrival (DOA) is the defined as the direction which the signal arrives to the sensor.
Direction finding is one of challenging areas in array processing. There are several direc-
tion finding algorithms such as MUltiple SIgnal Classification (MUSIC), Delay and
Sum Beamforming (DAS). This project covers a novel approach to direction finding
process called Mode Separation Direction Of Arrival angle estimation (MS−DOA).
This algorithm has some upper properties on others. Such as the error performance is
better or it can gives solutions with high accuracy. A new search routine for MS-DOA is
developed by using Genetic Algorithms. By using genetic algorithm search routine the
convergence of the algorithm is improved when the parameters has to be determined
increases. In this project the response of the algorithm scenarios are investigated.
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1. INTRODUCTION

Information can be delivered via electrical signals or electromagnetic waves in wireless
environment. Wireless systems are being used in most application areas. The detection
and recognition of objects is provided by receiving and processing signals which emit-
ted from them in military applications. The applications become more complicated
and need to receive, transmit and process more signals and data. The requirement of
processing more data and robustness needs to use of multiple sensors. Multiple sensor
systems can have better SNR, robustness and accuracy. One of the most known ap-
plications of these systems is direction finding and source localization. Direction Of
Arrival (DOA) is one of the most important parameters that needs to be estimated
for whole processes. There are several direction finding algorithms. MUltiple SIgnal
Classification(MUSIC), Estimation of Signal Parameters via Rotational Inavriance
Technique (ESPRIT) are some of direction finding algorithms. In this project Mode
Separation Direction Of Arrival angle estimation (MS−DOA) which is a novel ap-
proach to direction finding algorithms is investigated. MS-DOA consists of two main
parts the DOA process and a search routine. A new search routine is proposed by us-
ing genetic algorithm. The proposed search routine is investigated for the ionosphere
simulations and the real data.
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2. DIRECTION FINDING ALGORITHM

This chapter describes the theoretical background of MS-DOA algorithm.

2.1 SIGNAL MODEL

Consider an array of L element omnidirectional sensors immersed in a homogenous me-
dia in the far field of K source signals are impinging on the array which have frequency
f0.[2] As depicted in the figure 2.1 below r1 is the reference sensor at the origin. The
time taken by a plane wave to arrive each sensor is different. This time difference de-
pends on the array geometry, departure angles of the signals. Since the array geometry
is known so that the time delay introduced by γl(θk, φk).

Figure 2.1: Incoming electric field and coordinate system for the receiving array

γl(θk, φk) =
rl

c
.ν̂(θk, φk) (2.1)

where rl is position vector of lth sensor; ν̂ is the unit vector in the direction of kth signal
and c is velocity of light in vacuum. The demodulated baseband output of reference
sensor which is sampled at Nyquist rate is given by yk(l) and xl(t) which is the output
signal of lth sensor defined by

xl(t) =
K∑

k=1

yk(t)e
jw0γl(θk,φk) (2.2)

The two adjacent sensors have the time delayed versions of same signals. By using
equation(2.2) all sensor outputs are combined to have an array output matrix.
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2.2 DIRECTION OF ARRIVAL ESTIMATION

MS-DOA is a novel approach to direction finding algorithms. The algorithm is based
on subspace manipulation. It uses the time delays of individual sensors. The sensor
outputs are all linear combinations of each other. System is defined as linear system of
equations and the measurement model of the signals is written in matrix-vector form.

X = YAT (2.3)

where

X = [x1 . . .xl . . .xL] (2.4)

Y = [y1 . . .yk . . .yK ] (2.5)

A =




A1(a1) . . . A1(aK)
... . . .

...
AL(a1) . . . AL(aK)


 (2.6)

where Al(ak) = ejw0γl(θk,φk) and ak = [θk, φk]
T . Since xl’s are linear combinations of

yk’s, the rank of X can be at most K.[1] This implies that K basis vectors can be
necessary and enough to represent the measurement vector. There are several methods
to find subspace and basis functions. In this project as a subspace finding method
singular value decomposition is used.

2.3 SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) is one of the most elegant algorithms in
linear algebra for providing quantitative information about the structure of the system
of linear equations.[?] There are two ways of interest to singular value decomposition
in this project. First by using the singular values the number of impinging waves can
be determined. Also the basis functions which spans the subspace of xl’s. Applying
singular value decomposition on the sensor array output matrix in equation(2.3). The
sensor array output matrix can be decomposed to three orthogonal matrices each other

X = UΣVH (2.7)

U = [u1 . . .ul . . .uL] (2.8)

V = [v1 . . .vk . . .vL] (2.9)

Σ =




σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σL




(2.10)

Σ have L singular values on its diagonal but only some of them has significance on
others. Number of these significant singular values have the information of the number
of signals impinging on the array and also the information about subspace. The basis
vectors can be chosen as the effective part of these three orthogonal matrices according
to the significant singular values.
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Ueff = [u1 . . .ul . . .uK ] (2.11)

Veff = [v1 . . .vk . . .vK ] (2.12)

Then X can be written as

X = [u1 . . .ul . . .uK ][X1 . . .Xk . . .XK ]T (2.13)

and

[X1 . . .Xk . . .XK ]T =




σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σK



Veff

H (2.14)

By using above derivations the linear system of equations can be defined as




A 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 . . . A







Y1

Y2
...

YK




=




X1

Y2
...

XK




(2.15)

The above matrix equation defines the system and by using it the arrival angles can
be determined. Where Yk’s are yg which has to be determined and Xk’s vector is xg

which is the measurement data and A’s are produces Ag

2.4 THE LEAST SQUARES SOLUTION

The matrix in equation (2.15) has the solutions of the arrival angles but measurement
vector X has some noise components which are not belong to the subspace. Because
of this reason the exact solution can not be found. The optimum solution can be
found with some error tolerance. In order to find the optimum solution the least
squares approximation can be used. The following cost function which minimizes the
difference between the matrices given in equation(2.15)

J(a1; . . . aK ;yg) = ||Agyg − xg||2 (2.16)

where ||.|| denotes the L2norm.[1] By using this cost function and writing for all com-
ponents as a summation

J(a1; . . . aK ;yg) =
K∑

k=1

||AYk −Xk||2 (2.17)

Principle of orthogonality states that when a filter operates in its optimum condition
the estimate of desired response and corresponding estimation error are orthogonal to
each other.[3] By keeping this in mind the values of ak and yg which are minimizes
the corresponding cost function. Also maximizes the projection of Xk’s onto the range
space of A. The projections are defined by

Pk(ak) = A(AHA)−1AHXk (2.18)

Calculating the above projection and adding its magnitude square for all signals the
following maximizer can be obtained
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M(a1; . . . aK) =
K∑

k=1

||Pk||2 (2.19)

The values which are the maximizers of the above equation(2.18) are the desired solu-
tions of the system. Once the optimum angles are found the original message signals
can be obtained by further processing.
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3. THE SEARCHING ROUTINE

3.1 GENETIC ALGORITHMS

Genetic Algorithms (GA) are search algorithms based on the mechanics of natural
selection and natural genetics. They have some different properties from traditional
searcing methods.[5]

1. GAs work with coding the parameter set, not the parameters themselves.

2. GAs search from a population of points, not a single point.

3. GAs use an objective function information, not derivatives or other auxiliary
knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

GA has the ability of solving multiple parameter problems. The parameters of the GA
is converted to binary form according to provided translation procedure which is called
chromosome. The combination of one set of parameters is gene. Thus, the algorithm
uses these genes in the operation. Every gene has a fitness values according to the
objective function.[5]
The operating steps of standard genetic algorithm as follows:

1. (a) There should be a restriction of the range of it.

(b) Initial population should be appropriate for the objective.

2. Production of next generation by using parents

(a) Fitness function gives the information about the member if the member can
be suitable member.

(b) GA has crossover operator to exchange some parts of parents each other;
the selection of parents and which parts should be exchanged can be both
deterministic or stochastic. This operator results a new member. Parents
produces offsprings by using crossover.

(c) Mutation operator is the change of some parts of members randomly with
a mutation probability. Mutation provides not to stay around the artifacts.

(d) Selection operation is the decision of which member should survive and
which should extinct according to fitness of the member.

3. Formation of new population by using survived and produced new members.

4. Turning back and evaluating previous steps.

(a) The evaluation loop of whole genetic algorithm must be end.

(b) The decision procedure that which situations the solution can be accepted
as optimum.
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3.2 The Proposed Genetic Search Routine For MS-DOA.

There are several applications of genetic algorithms on array signal processing of direc-
tion of arrival estimation. The method employed by this project is based on minimiza-
tion of the cost function defined by equation (2-17). The cost function which has to be
minimized actually a multi parameter problem. Genetic algorithms give powerful and
accurate solutions for multi parameter problems. GA’s can be classified as member of
stochastic optimization techniques. By this reason searching the space will be done by
stochastically. GA is inspired by the mechanism of natural selection where stronger
individuals would like to be the winners in a competing environment.[4] The proposed
GA based search routine also uses the direct analogy of human genetic properties. The
steps of the search routine can be given as follows:

3.3 Representation of the Chromosomes

Binary representation of the chromosomes are widely used in genetic algorithms. In this
type of representation all individuals are encoded by a technique to form a chromosome.
The algorithm operates on these generated chromosomes not the parameters itself.
Some application areas there may not be need of representing the individuals as binary
form. In DOA applications the operation is done on the real values of individuals, they
are defined as real parameter problems. By this reason making the computations on
binary form causes extra computational complexity. To avoid this situation another
representation of chromosomes can be used. This is called floating point representation.
In floating point representation the chromosomes are not converted in binary; they are
represented by their own values. In this project the chromosomes are represented in
floating point structure.

3.4 Initialization of Population

Initial population could be generated by various methods. It could be generated by
randomly or some restrictions could be made. Such as taking the bounds of which the
desired angles lies in. This requires a pre-estimation of DOA which is called intelligent
initialization. Intelligent initialization is based on some rough DOA estimates, which
are computed by a pre-estimator.[4] As pre-estimator various DF methods can be used.
In this project the standard MUSIC algorithm is used for initialization of population
intelligently. MUSIC roughly estimates where the desired angles could be lied in. There
is no need to find very accurate solutions from MUSIC. It only narrows the search space
by giving the approximate bounds. Initial population individuals are generated only
in the bounds which comes from MUSIC. By making this pre-estimation there is no
need to search all space and the computation speed increases.
Each solution set is defined by column vectors of containing the real valued floating
point representation of angles. Each member of this column vectors represented byPn

vectors. Initial population P is composed of this column vectors, where N denotes the
population size.

Pn = [θ1nφ1n . . . θknφkn]T (3.20)
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P =




θ11 θ12 . . . θ1N

φ11 φ12 . . . φmN
...

...
. . .

...
θk1 θk2 . . . θkN

φk1 φk2 . . . φkN




(3.21)

3.5 Mating Scheme;Selection Method

The quality of an offspring is almost proportional to its parents. Because of this
reason selection of parents gets more important. In genetic algorithm literature there
are several selection methods Such as roulette wheel selection and emperor selective
scheme. The selection is the process of which parents will mate with which of them.
Ranking is also an important parameter which defines the quality of the algorithm. In
the project all members of the population is sorted according to their fitness values.
The fittest solution sets have higher rank and more closer to the desired solutions.
Emperor Selective Scheme EMS is used in this project to select the parents which
will get mate with each other. In emperor selective scheme the best parents have the
chance of getting mate with other parents. The mechanism is explained in the figure.
In this problem emperor selective scheme is chose according to its high efficiency in
these type of applications.

Figure 3.2: Emperor Selective Scheme Block Diagram

3.6 Crossover Operation

Crossover operation is one of the most important and basic operators in genetic algo-
rithms. Crossover operation is generating new offsprings from their parents. By making
this operation the variation of the population is provided. Crossover is usually carried
out on the binary coded chromosomes but this problem the chromosomes are defined
by floating point representation. So that the crossover operation could be done either
on the real values or some encoding needed to convert the chromosomes to binary form
and reverse. In stead of this extra computational load. Extrapolation CrossoverEPX
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Technique is used on the real valued chromosomes. Extrapolation crossover technique
is based on generation of new offsprings which are lies in the range defined by two
parents. EPX takes two parents, P1 and P2, to produce two offsprings, C1 and C2,
that lie outside the range, a, of the two parents. The offsprings have equal probability
to lie within the range a, extended in both directions from P1 and P2. C1 will then lie
on the same side as P1 and C2 on the same side as P2. The range ,a, of the parents is
defined by

δ = (P2, P1), whereP2 > P1 (3.22)

C1 = P1 + a.δ (3.23)

C2 = P2 + a.δ (3.24)

where δ is a randomly chosen number between 1 and 2. In this project δ is set to 1.5
to have the maximum extrapolation.[6]

3.7 Mutation Operation

Mutation is also the important operator of the genetic algorithms.This operator is used
to quarantee the variation of the populations.By using this operator the algorithms are
avoided from approaching the local maximums instead of the global maximums. As
in crossover operators; mutation operation is done on binary coded forms of chro-
mosomes.In this project the chromosomes are represented by floating point structure.
Because of this reason the mutation could be carried out on real valued chromosomes
due to avoiding the computational complexity. In this project mutation is held by
inserting a new solution set into the population.

3.7 Elitism Property

Genetic algorithms are already powerful optimization techniques; but their convergence
property could be improved by keeping some of previous population to next generation.
Keeping some of fittest parents of previous population and inserting them into the
new generation is called elitism property. In this type of applications keeping some
percentage of the fittest or elite population helps the convergency. In this project 0.1
percent of elite population is said to be elite population and kept for next generation.

3.8 Termination Criteria

Termination criteria is the exact definition of where the algorithm must stop and how
the solutions that found could be accepted. In some applications especially the al-
gorithms that are designed for approaching specific values of solutions; termination
criteria could be defined by using the probability of being close to the desired value. In
DOA applications the desired solutions can not be known just they must be estimated.
Termination criteria of this type of searching routines are defined by observation of the
response of the algorithm. Because the routine does not know how it get close to the
exact solutions.
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Figure 3.3: Genetic Algorithm Search Flowchart
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4. TESTS AND RESULTS

4.1 General Settlements and Explanation

The Ionosphere channel output is generated by using a computer simulation program
in matlab environment. The receiver array is 2x2 planar array which is placed on the
xy-plane. There are three different sensor types are used.These are crossed-loop,vertical
dipole, tripole antennas.The Ionosphere conditions are set as good and poor Ionosphere.
The open circuit antenna outputs are processed by using MS-DOA and the developed
search routine.The simulations are carried out for each case by 50 trials. The time
required for getting the result for one trial is 120 seconds by mean. The error figures
are both given in root mean square and normalized standard deviation forms.
The real data is collected from a circular receiver array. The source point of the real
data is in Uppsala, Sweeden. The receiver array is in Kiruna, Sweeden. The open
circuit antenna outputs are processed after normalizing each. Some cases investigated
for real data case[8]

4.2 Optimization Of The Genetic Algorithm Parameters

The developed genetic algorithm search routine has some parameters which should be
set to optimum values. The parameters are population size, crossover and mutation
probability, elite population percentage and the termination criteria. First of all by
keeping all parameters constant; the response of the search routine to the population
size variation is investigated. The large population helps the convergence but also it
causes extra computational load. On the other hand small population sizes have very
little computational load but they might have some convergence problems. The results
of them are given at the appendix.
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HF band simulations

4.3 SCENARIO A

In this scenario there is one signal impinging on the receiver array. The good and
poor ionosphere conditions are investigated separately and the root mean square and
normalized standard deviations of the errors are calculated according to various SNR
values.
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Figure 4.4: RMSE error of φ for one signal
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Figure 4.5: RMSE error of φ for one signal
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Figure 4.6: Normalized Standard Deviation of φ error for one signal
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Figure 4.7: Normalized Standard Deviation of θ error for one signal
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Poor Ionosphere Condition
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Figure 4.8: RMSE error of φ for one signal
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Figure 4.9: RMSE error of θ for one signal
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Figure 4.10: Normalized Standard Deviation of φ error for one signal
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Figure 4.11: Normalized Standard Deviation of θ error for one signal
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SCENARIO B

In this scenario there is two signals impinging on the receiver array. They have much
distance with each other. The good and poor ionosphere conditions are investigated
separately and the root mean square and normalized standard deviations of the errors
are calculated according to various SNR values.
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Figure 4.12: RMSE error of φ1 for two signals
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Figure 4.13: RMSE error of φ2 for two signals
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Figure 4.14: RMSE error of θ1 for two signals
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Figure 4.15: RMSE error of θ2 for two signals
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Figure 4.16: Normalized Standard Deviation of φ1 for two signals
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Figure 4.17: Normalized Standard Deviation of φ2 for two signals



19

0 5 10 15 20
0.5

1

1.5

2

2.5

3

SNR(dB)

N
or

m
al

iz
ed

 S
ta

nd
ar

d 
D

ev
ia

tio
n(

de
gr

ee
)

Normalized Standard Deviation of Elevation−1 for Good Ionosphere

crossed loop
tripole
vertical dipole

Figure 4.18: Normalized Standard Deviation of θ1 for two signals
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Figure 4.19: Normalized Standard Deviation of θ2 for two signals



20

POOR Ionosphere Condition
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Figure 4.20: RMSE error of φ1 for two signals

0 5 10 15 20
1

2

3

4

5

6

7

8

9

10

SNR(dB)

R
M

S
E

(d
eg

re
e)

Azimuth−2 Error for Poor Ionosphere

crossed loop
tripole
vertical dipole

Figure 4.21: RMSE error of φ2 for two signals
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Figure 4.22: RMSE error of θ − 1 for two signals
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Figure 4.23: RMSE error of θ2 for two signals
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Figure 4.24: Normalized Standard Deviation of φ1 for two signals
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Figure 4.25: Normalized Standard Deviation of φ2 for two signals
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Figure 4.26: Normalized Standard Deviation of θ1 for two signals
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Figure 4.27: Normalized Standard Deviation of θ2 for two signals
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SCENARIO C

In this scenario there are two close signals impinging on the receiver array. The good
and poor ionosphere conditions are investigated separately and the root mean square
and normalized standard deviations of the errors are calculated according to various
SNR values.
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Figure 4.28: RMSE error of φ1 for two close signals
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Figure 4.29: RMSE error of φ2 for two close signals
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Figure 4.30: RMSE error of θ1 for two close signals
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Figure 4.31: RMSE error of θ2 for two close signals
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Figure 4.32: Normalized Standard Deviation of φ1 for two close signals
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Figure 4.33: Normalized Standard Deviation of φ2 for two close signals
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Figure 4.34: Normalized Standard Deviation of θ1 for two close signals
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Figure 4.35: Normalized Standard Deviation of θ2 for two close signals
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POOR Ionosphere Condition
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Figure 4.36: RMSE error of φ1 for two close signals
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Figure 4.37: RMSE error of φ2 for two close signals
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Figure 4.38: RMSE error of θ1 for two close signals
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Figure 4.39: RMSE error of θ2 for two close signals
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Figure 4.40: Normalized Standard Deviation of φ1 for two close signals
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Figure 4.41: Normalized Standard Deviation of φ2 for two close signals
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Figure 4.42: Normalized Standard Deviation of θ1 for two close signals
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Figure 4.43: Normalized Standard Deviation of θ2 for two close signals
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Real Data Tests

he signals processed in the simulations were radiated by a Doppler and Multipath
SOunding Network (DAMSON) transmitter which is the result of a collaboration
between the UK Defence Evaluation and Research Agency, the Canadian Commu-
nications Research Center, the Norwegian Defence Research Establishment and the
Swedish Defence Research Establishment. This system characterizes the propagation
path using a number of sounding signals which can be freely scheduled.

The Changes on the Genetic Search Method and the Genetic Algorithm
Parameters

In the real data considerations there was a need to update the genetic search method
and its parameters. Some changes made in the selection and rankings and also the
logical flow of the method. The initial population generation is same as the method
used in the simulated scenarios. The major change in the search method is the fitness
evaluation points. Before fitness evaluation is done just after the initial population
generation. This is true for the first generation but for the other generations this
scheme had some convergence problems. To quarantee the convergence of the search
routine the fitness evaluation point is taken out of the generation loop and the fitness
evaluation is done after the new ofsprings are generated. This change provided for
selection of both more powerful parents and ofsprings. The selection is made according
to the total of maximums of each signal path. On the other hand next generation the
selection is made according to individual maximums. This logic helped the routine to
get the global maximum as fast as possible for this problem. The updated new search
routine is given at the appendix.
The updated new routine is again tested by the simulations and after by the real data.
The parameters of the genetic search routine is set as the population size is consists
of 50 individual solution sets. The mutation probability is set as 0.1. Elit parents
percentage is set as 0.1. The EMS mating scheme is used for generating the mating
pairs and the sets are sorted in descending order according to their whole and individual
fitness values for eliminating the weaker solution sets.

Simulation Tests

There are three conditions are tested.First there are two close signals both elevation
and azimuth.Second two signals with same azimuth angle and the last case two signals
with same elevation angles.
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Test Case 1
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Figure 4.44: RMSE of combined error for good and poor ionosphere conditions
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Figure 4.45: Normalized Standard deviation of error for good ionosphere conditions

0 10 20 30 40
0

0.5

1

1.5

Normalized Standard Deviation for θ
1

SNR(dB)

σ θ 1(d
eg

re
e)

0 10 20 30 40
0

0.5

1

1.5

Normalized Standard Deviation for θ
2

SNR(dB)

σ θ 2(d
eg

re
e)

0 10 20 30 40
0

0.5

1

1.5

2

Normalized Standard Deviation for φ
1

SNR(dB)

σ φ 1(d
eg

re
e)

0 10 20 30 40
0

0.5

1

1.5

Normalized Standard Deviation for φ
2

SNR(dB)

σ φ 2(d
eg

re
e)

Figure 4.46: Normalized Standard deviation of error for poor ionosphere conditions



35

Test Case 2
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Figure 4.47: RMSE of combined error for good and poor ionosphere conditions
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Figure 4.48: Normalized Standard deviation of error for good ionosphere conditions
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Figure 4.49: Normalized Standard deviation of error for poor ionosphere conditions
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Test Case 3
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Figure 4.50: RMSE of combined error for good and poor ionosphere conditions
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Figure 4.51: Normalized Standard deviation of error for good ionosphere conditions
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Figure 4.52: Normalized Standard deviation of error for poor ionosphere conditions
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Real Data Test Results
The real data is radiated in two frequencies 4.636 MHz and 6.953 MHz. The data is
collected for every 3 minutes. Found angles are given in the figure below and the
tabular data is given at the appendix. MUSIC can resolve only one path while
MS-DOA can resolve tow paths with high accuracy. The search times are also quite
short when the genetic search routine is used. MS-DOA with genetic search method
can give solutions about 20 seconds meanwhile the brute force search method takes
about 15 minutes.
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Figure 4.53: Results for real data
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5. CONCLUSION

Direction Of Arrival (DOA) is a very attractive application area in array signal pro-
cessing. There are several direction finding algorithms in literature. In this project
Mode Separation Direction Of Arrival angle estimation(MS−DOA) algorithm is
investigated. It uses a sensor array and uses the time delay of each array element when
a signal impinging on the array. The baseband output of each sensor is sampled with
nyquist rate. These sampled data is converted into linear system of equations. Then
the measurement matrix is separated into two subspaces according to the number in-
formation of incoming signals by singular value decomposition. The signal subspace
have the information of signals but can not represent all components of noise in terms
subspace coefficients. By the result of this situation the solution can not be estimated
directly. The least squares approximation is used for finding the optimum solution.
The principle of orthogonality of the least squares algorithm states that when the error
gets minimum the projection of coefficients of subspace onto the range space of array
manifold gets maximum. As a searching algorithm the brute force is used although
it gives the solutions with very high accuracy. It is very slow according to the other
search routines. Because of this reason genetic algorithm based new search routine
is proposed. The new search routine the time required for getting the solutions are
decreased rapidly. Especially when the signal number increases the algorithm could
give acceptable solutions again. Genetic search method introduces some error due to
stochastic search but the search times gets quite low. In this project the MS-DOA
algorithm is improved by adding genetic search method. By making this improvement
direction finding capability of MS-DOA is improved by reduced search times. The algo-
rithm resolves the angle of arrivals better than Plain MUSIC and gives more accurate
solutions.
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